Abstract

The authors recently showed that the retinal circulation can be accessed by transfemoral endovascular catheterization. The purpose of this study was to examine whether endovascular coiling can be used to induce different degrees of ischemic injury. The possibility of creating occlusions at different sites in the vasculature to cause retinal ischemia with different degrees of severity was investigated. The ophthalmic artery was catheterized through the external carotid system using a fluoroscopy-monitored, transfemoral, endovascular approach in 12 pigs (mean weight, 70 kg). The effects were evaluated using angiography and multifocal electroretinography. Occlusion of arteries supplying the retina was established using endovascular coiling. Coiling in the proximal part of the ophthalmic artery caused no or little ischemia, presumably because of collateral blood supply. Coiling in the distal part of the ophthalmic artery, over the branching of the main ciliary artery, caused more severe retinal ischemia. Multifocal electroretinography recordings, which reflect retinal function in an area close to the visual streak, showed decreased amplitudes and increased implicit times after distal occlusion, but not after proximal occlusion of the ophthalmic artery. The responses were similar 1 hour and 72 hours after coiling, indicating that a permanent ischemic injury was established. The porcine ophthalmic artery can be occluded using an endovascular coiling technique. This provides an experimental animal model of retinal ischemia in which occlusion at different sites of the vasculature produces different degrees of severity of the ischemic damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.