Abstract

Endotracheal tubes (ETTs) are commonly associated with laryngeal injury that may be short lasting and temporary or more severe and life altering. Injury is believed to result from forces that these ETTs exert on the larynx. Here we quantify the forces of ETTs of various sizes on the laryngotracheal complex to gain a more quantitative understanding of these potential damaging forces. Here we also perform preclinical testing of a novel support device to offload these forces. Endotracheal intubation was performed on a fresh human cadaver using various ETT sizes. A strain-sensitive graphene nanosheet sensor and a commercially available force sensing resistor were secured behind the larynx, anterior to the prevertebral fascia. The forces exerted on the larynx were measured for each of the commonly used ETTs. A novel support device, ETT clip (Endo Clip), was attached to the ETTs and changes in these forces were observed. Forces exerted on the laryngotracheal complex by various ETTs were observed to increase with increasing tube size. This pressure can be significantly reduced with a novel ETT clip. Here we demonstrate the first quantitative measurement of forces that ETTs exert on the larynx. We demonstrate a novel device that can easily clip onto an ETT reducing pressure on the laryngotracheal complex. This preclinical test paves the way for a human clinical trial. 5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call