Abstract

Biliary epithelial cells possess an innate immune system consisting of Toll-like receptors (TLRs). Although the human bile contains lipopolysaccharide (LPS) in normal as well as diseased livers, LPS physiologically does not elicit an inflammatory response in the biliary tree. This absence of a response to LPS could be due to the 'endotoxin tolerance' speculated to maintain innate immune homeostasis in organs. Our aim here is to clarify the presence and molecular mechanisms of endotoxin tolerance of biliary epithelium. In nuclear factor-kappaB (NF-kappaB)-DNA binding assays using three-cultured human intrahepatic biliary epithelial cell (HIBEC) lines, all the cells responded to LPS (TLR4 ligand) by activating NF-kappaB, but pretreatment with LPS for 24 h effectively induced tolerance against any subsequent stimulation with LPS (endotoxin tolerance). This tolerance was also induced by pretreatment with Pam(3)Cys-Ser-(Lys)(4) trihydrochloride (Pam(3)CKS(4), TLR1/2 ligand). Then, real-time polymerase chain treaction and Western blotting revealed that LPS treatment upregulated the expression of IRAK-M (a negative regulator of TLR signaling), but did not affect interleukin-1 receptor-associated kinase-1 (IRAK-1, an essential molecule of TLR signaling), in HIBECs. Moreover, immunohistochemistry revealed that IRAK-M was diffusely expressed in intrahepatic bile ducts. This study showed that the mechanism of endotoxin tolerance exists in the intrahepatic biliary tree and is possibly induced by the expression of IRAK-M in the intrahepatic biliary epithelium, suggesting that the endotoxin tolerance is important in maintaining innate immune biliary homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.