Abstract

Exposure to bacterial endotoxin (lipopolysaccharide, LPS) is quite common and may increase human susceptibility to chemical-induced tissue injury. The purpose of this study was to identify mechanisms by which LPS potentiates lymphoid tissue depletion in B6C3F1 mice exposed to the common food-borne trichothecene mycotoxin, vomitoxin (VT). As demonstrated by DNA fragmentation and flow cytometric analysis, apoptosis in thymus, Peyer's patches, and bone marrow was marked in mice 12 h after administering Escherichia coli LPS (0.1 mg/kg body wt ip) concurrently with VT (12.5 mg/kg body wt po), whereas apoptosis in control mice or mice treated with either toxin alone was minimal. Based on observed increases in tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 serum concentrations following LPS and VT cotreatment, the roles of these cytokines in apoptosis potentiation were assessed. Injection with rolipram, an inhibitor of TNF-α expression, or use of IL-6 knockout mice was ineffective at impairing thymic apoptosis induction by the toxin cotreatment, suggesting that these cytokines did not mediate LPS potentiation. Toxin cotreatment increased splenic cyclooxygenase-2 mRNA expression, suggesting possible involvement of prostaglandins in apoptosis. However, indomethacin, a broad spectrum inhibitor of cyclooxygenases, failed to block thymus apoptosis. Toxin cotreatment increased serum corticosterone and, furthermore, RU 486, a glucocorticoid receptor antagonist, significantly abrogated apoptosis in thymus, Peyer's patches, and bone marrow following LPS + VT exposure. The results presented herein and the known capacity of glucocorticoids to cause apoptosis indicate that hypothalamic–pituitary–adrenal axis plays a key role in LPS potentiation of trichothecene-induced lymphocyte apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call