Abstract

The extracellular matrix glycosaminoglycan, hyaluronan, has been described as a regulator of tissue inflammation, with hyaluronan fragments reported to stimulate innate immune cells. High molecular mass hyaluronan is normally present in tissues, but upon inflammation lower molecular mass fragments are generated. It is unclear if these hyaluronan fragments induce an inflammatory response or are a consequence of inflammation. In this study, mouse bone marrow derived macrophages and dendritic cells (DCs) were stimulated with various sizes of hyaluronan from different sources, fragmented hyaluronan, hyaluronidases and heavy chain modified-hyaluronan (HA-HC). Key pro-inflammatory molecules, tumour necrosis factor alpha, interleukin-1 beta, interleukin-12, CCL3, and the co-stimulatory molecules, CD40 and CD86 were measured. Only human umbilical cord hyaluronan, bovine testes and Streptomyces hyaluronlyticus hyaluronidase stimulated macrophages and DCs, however, these reagents were found to be contaminated with endotoxin, which was not fully removed by polymyxin B treatment. In contrast, pharmaceutical grade hyaluronan and hyaluronan fragments failed to stimulate in vitro-derived or ex vivo macrophages and DCs, and did not induce leukocyte recruitment after intratracheal instillation into mouse lungs. Hence, endotoxin-free pharmaceutical grade hyaluronan does not stimulate macrophages and DCs in our inflammatory models. These results emphasize the importance of ensuring hyaluronan preparations are endotoxin free.

Highlights

  • HA fragments (

  • To compare the effects of HA from these different sources, CSF-1 induced BMDMs were challenged with a panel of commercially available purified HA of different specific molecular sizes (HA 1.5 M, 200 K, 20 K,

  • To test if the inflammatory effect of Huc HA on macrophages was dependent on the HA surface receptor CD44, CSF-1 induced BMDMs lacking CD44 expression were generated from the bone marrow of CD44−/− mice and stimulated with Huc HA

Read more

Summary

Introduction

HA fragments (

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.