Abstract

Response to Gram-negative bacteria (GNB) is partially mediated by the recognition of GNB-derived endotoxin by host cells. Potent host response to endotoxin depends on the sequential interaction of endotoxin with lipopolysaccharide binding protein (LBP), CD14, MD-2 and TLR4. While CD14 facilitates the efficient transfer of endotoxin monomers to MD-2 and MD-2·TLR4, activation of MD-2·TLR4 can occur in the absence of CD14 through an unknown mechanism. Here, we show that incubation of purified endotoxin (E) aggregates (Eagg, Mr ≥ 20 million) in PBS with ≥ 0.1% albumin in the absence of divalent cations Ca2+and Mg2+, yields E·albumin complexes ( Mr∼70,000). E·albumin transfers E monomers to sMD-2 or sMD-2·TLR4 ectodomain (TLR4ecd) with a ‘ Kd’ of ∼4 nM and induces MD-2·TLR4-dependent, CD14-independent cell activation with a potency only 10-fold less than that of monomeric E·CD14 complexes. Our findings demonstrate, for the first time, a mechanistic basis for delivery of endotoxin monomers to MD-2 and for activation of TLR4 that is independent of CD14.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.