Abstract
Silicon monoxide (SiO)-based materials have gained much attention as high-capacity lithium storage materials based on their high capacity and stable capacity retention. However, low initial Coulombic efficiency associated with the irreversible electrochemical reaction of the amorphous SiO2 phase in SiO inhibits the wide usage of SiO-based anode materials for lithium-ion batteries. Magnesiation of SiO is one of the most promising solutions to improve the initial efficiency of SiO-based anode materials. Herein, we demonstrate that endothermic dehydrogenation-driven magnesiation of SiO employing MgH2 enhanced the initial Coulombic efficiency of 89.5% with much improved long-term cycle performance over 300 cycles compared to the homologue prepared by magnesiation of SiO with Mg and pristine SiO. High-resolution transmission electron microscopy with thermogravimetry-differential scanning calorimetry revealed that the endothermic dehydrogenation of MgH2 suppressed the sudden temperature rise during magnesiation of SiO, thereby inhibiting the coarsening of the active Si phase in the resulting Si/Mg2SiO4 nanocomposite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.