Abstract

The subcellular localization of the enzymes synthesizing endothelium-derived vasodilator autacoids has been proposed to play a role in determining the ability of endothelial cells to enhance autacoid production in response to stimulation. We therefore investigated the effects of brefeldin A-induced disruption of the Golgi apparatus and Golgi-plasma membrane trafficking on the production of nitric oxide (NO), prostacyclin, and the endothelium-derived hyperpolarizing factor (EDHF) by native and cultured endothelial cells. In porcine coronary artery segments, brefeldin A (35 micromol/L, 90 minutes) did not affect relaxations to sodium nitroprusside or the K+ channel opener cromakalim but elicited a rightward shift in the concentration-response curve to bradykinin without altering the maximum vasodilator response (Rmax). Brefeldin A failed to attenuate the bradykinin-induced, NO-mediated relaxation under depolarizing conditions but inhibited the bradykinin response under conditions of combined cyclooxygenase/NO synthase blockade, suggesting that this agent selectively interferes with the production of EDHF. Indeed, incubation of porcine coronary arteries with brefeldin A, which did not affect the bradykinin-induced accumulation of either cyclic GMP or 6-keto-prostaglandin F1alpha, markedly and reversibly attenuated the EDHF-mediated hyperpolarization of detector smooth muscle cells in a patch-clamp bioassay system. The microtubule destabilizer nocodazole also affected both the EC50 and Rmax to bradykinin in porcine coronary arteries. Since EDHF is thought to be a cytochrome P450-derived metabolite of arachidonic acid and both brefeldin A and nocodazole are known to interfere with the targeting of cytochrome P450 from the Golgi apparatus to the plasma membrane, it is conceivable that brefeldin A inhibits EDHF formation by preventing the targeting of the EDHF-synthesizing enzymes to the plasma membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.