Abstract

After endothelial damage in vivo, there is an induction of nitric oxide synthase (NOS) in the underlying smooth muscle cells. We hypothesized that intrinsic factors could induce NOS independently of blood elements. This was tested using an in vitro organ culture technique. Rat aortas with endothelium removed before 24-h organ culture (ERB) failed to constrict to phenylephrine after culture, whereas with endothelium removal after culture there was a normal constrictor response. Constrictor activity in ERB aortas was restored by the concomitant treatment with either the protein synthesis inhibitor cycloheximide (1 microM) or the NOS inhibitor L-N5-(1-iminoethyl)ornithine hydrochloride (L-NIO, 100 microM). The ERB aortas also had an elevated NOS activity and induced NOS (iNOS) immunoreactivity. The constrictor response to phenylephrine in ERB aortas was only partially restored by acute application of L-NIO subsequent to the 24-h organ culture, which suggests that other effects during culture contributed to the diminished tissue response. When ERB aortas were treated with reduced glutathione (GSH, 3 mM for 24 h), acute application of L-NIO then fully restored the constrictor effect. This suggests that peroxynitrite produced during culture may in part be responsible for loss of constrictor effects, and this was substantiated by the presence of nitrated tyrosine residues in aortic proteins and also widespread DNA damage, which was prevented by both L-NIO and GSH. Thus some of the immediate (24-h) effects of endothelium removal involve intrinsic mechanisms resulting in iNOS synthesis, which leads to both nitric oxide and peroxynitrite generation, with resultant tissue damage and loss of contractile function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call