Abstract

Nitrosyl ruthenium complexes have been characterized as nitric oxide (NO) donors that induce relaxation in the denuded rat aorta. There are some differences in their vascular relaxation mechanisms compared with sodium nitroprusside. This study investigates whether the endothelium could interfere with the [Ru(terpy)(bdq)NO](3+)-TERPY-induced vascular relaxation, by analyzing the maximal relaxation (Emax) and potency (pD(2)) of TERPY. Vascular reactivity experiments showed that the endothelium negatively modulates (pD(2): 6.17+/-0.07) the TERPY relaxation in intact rat aortic rings compared with the denuded rat aorta (pD(2): 6.65+/-0.07). This effect is abolished by a non-selective NO-synthase (NOS) inhibitor L-NAME (pD(2): 6.46+/-0.10), by the superoxide anion (O(2)(-)) scavenger TIRON (pD(2): 6.49+/-0.08), and by an NOS cofactor BH(4) (pD(2): 6.80+/-0.10). The selective dye for O(2)(-) (DHE) shows that TERPY enhances O(2)(-) concentration in isolated endothelial cells (intensity of fluorescence (IF):11258.00+/-317.75) compared with the basal concentration (IF: 7760.67+/-381.50), and this enhancement is blocked by L-NAME (IF: 8892.33+/-1074.41). Similar results were observed in vascular smooth muscle cells (concentration of superoxide after TERPY: 2.63+/-0.17% and after TERPY+L-NAME: -4.63+/-0.14%). Considering that TERPY could induce uncoupling NOS, thus producing O(2)(-), we have also investigated the involvement of prostanoids in the negative modulation of the endothelium. The non-selective cyclooxygenase (COX) inhibitor indomethacin and the selective tromboxane (TXA(2)) receptor antagonist SQ29548 reduce the effect of the endothelium on TERPY relaxation (pD(2) INDO: 6.80+/-0.17 and SQ29548: 6.85+/-0.15, respectively). However, a selective prostaglandin F(2alpha) receptor antagonist (AH6809) does not change the endothelium effect. Moreover, TERPY enhances the concentration of TXA(2) stable metabolite (TXB(2)), but this effect is blocked by L-NAME and TIRON. The present findings indicate that TERPY induces uncoupling of eNOS, enhancing O(2)(-) concentration. This enhancement in O(2)(-) concentration induces COX activation, producing TXA(2), which negatively modulates the rat aorta relaxation induced by the NO donor TERPY.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call