Abstract

The review deals with the release of endothelium-derived dopamine and 6-nitrodopamine (6-ND) and its effects on isolated vascular tissues and isolated hearts. Basal release of both dopamine and 6-ND is present in human isolated umbilical cord vessels, human popliteal vessels, nonhuman primate vessels, and reptilia aortas. The 6-ND basal release was significantly reduced when the tissues were treated with Nω-nitro-l-arginine methyl ester and virtually abolished when the endothelium was mechanically removed. 6-Nitrodopamine is a potent vasodilator, and the mechanism of action responsible for this effect is the antagonism of dopamine D2-like receptors. As a vasodilator, 6-ND constitutes a novel mechanism by which nitric oxide modulates vascular tone. The basal release of 6-ND was substantially decreased in endothelial nitric oxide synthase knockout (eNOS-/-) mice and not altered in neuronal nitric oxide synthase knockout (nNOS-/-) mice, indicating a nonneurogenic source for 6-ND in the heart. Indeed, in rat isolated right atrium, the release of 6-ND was not affected when the atria were treated with tetrodotoxin. In the rat isolated right atrium, 6-ND is the most potent endogenous positive chronotropic agent, and in Langendorff's heart preparation, it is the most potent endogenous positive inotropic agent. The positive chronotropic and inotropic effects of 6-ND are antagonized by β1-adrenoceptor antagonists at concentrations that do not affect the effects induced by noradrenaline, adrenaline, and dopamine, indicating that blockade of the 6-ND receptor is the major modulator of heart chronotropism and inotropism. The review proposes that endothelium-derived catecholamines may constitute a major mechanism for control of vascular tone and heart functions, in contrast to the overrated role attributed to the autonomic nervous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call