Abstract
1. We investigated whether K(+) can act as an endothelium-derived hyperpolarizing factor (EDHF) in isolated small renal arteries of Wistar-Kyoto rats. 2. Acetylcholine (0.001 - 3 microM) caused relaxations that were abolished by removal of the endothelium. However, acetylcholine-induced relaxations were not affected by the nitric oxide (NO) synthase inhibitor N:(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM), by L-NAME plus the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 1 microM) or by L-NAME plus the cyclo-oxygenase inhibitor indomethacin (10 microM). In rings precontracted with high-K(+)(60 mM) physiological salt solution in the presence of L-NAME, acetylcholine-induced relaxations were abolished. 3. L-NAME-resistant relaxations were abolished by the large-conductance Ca(2+)-activated K(+) channel inhibitor charybdotoxin plus the small-conductance Ca(2+)-activated K(+) channel inhibitor apamin, while the inward rectifier K(+) channel inhibitor Ba(2+) or the gap junction inhibitor 18alpha-glycyrrhetinic acid had no effect. Acetylcholine-induced relaxation was unchanged by ouabain (10 microM) but was partially inhibited by a higher concentration (100 microM). 4. In half of the tissues tested, K(+)(10 mM) itself produced L-NAME-resistant relaxations that were blocked by ouabain (10 microM) and partially reduced by charybdotoxin plus apamin, but not affected by 18alpha-glycyrrhetinic acid or Ba(2+). However, K(+) did not induce relaxations in endothelium-denuded tissues. 5. In conclusion, acetylcholine-induced relaxations in this tissue are largely dependent upon hyperpolarization mechanisms that are initiated in the endothelium but do not depend upon NO release. K(+) release cannot account for endothelium-dependent relaxation and cannot be an EDHF in this artery. However, K(+) itself can initiate endothelium-dependent relaxations via a different pathway from acetylcholine, but the mechanisms of K(+)-induced relaxations remain to be clarified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.