Abstract

Elevated plasma level of lipoprotein(a) (Lp(a)) is a well established risk factor for premature atherosclerosis and coronary artery disease. Recent studies showed impaired endothelium-dependent vasodilatation in humans with elevated plasma Lp(a). However, these human studies could not determine whether (1) elevated Lp(a) levels alone are the cause of endothelial dysfunction (these patients had multiple risk factors), and (2) native or oxidatively modified Lp(a) contributes to endothelial dysfunction (no measurements of native/oxidized Lp(a) ratio was reported in humans). In order to test whether apo(a) (an essential component of Lp(a) which is required for binding to endothelial cells) and native Lp(a) cause endothelial dysfunction, in the present study we tested endothelium-dependent vasorelaxation in aortic rings isolated from control and transgenic male mice either expressing the human apo(a) gene (TgA) or both the human apo(a) and human apo B100 genes (TgL). The TgA mice had plasma apo(a) levels of 8.8 +/- 1.2 mg/dl (n=6) and the double transgenic TgL mice had plasma Lp(a) levels of 15.3 +/- 1.4 mg/dl (n=8). Isolated aortic rings with and without endothelium were mounted in organ chambers and contracted with U46619 (10(-8) M) in the presence of ibuprofen (10(-5) M). Acetylcholine caused concentration-dependent (10(-9)-10(-5) M) relaxation, which could be prevented by endothelium removal and by NG-L-nitro-arginine (10(-4) M). Basal and acetylcholine-stimulated endothelium-dependent relaxation and endothelium-independent relaxation to nitroglycerin (10(-6) M) were not significantly different in aortic rings isolated from control and TgA or TgL mice. Twenty-four hour incubation of aortic rings isolated from control mice with recombinant human apo(a) or native Lp(a) (up to 300 microg/ml) caused no impairment of endothelium-dependent relaxations. In contrast, incubation with oxidized Lp(a) (50 microg/ml) or oxidized LDL (250 microg/ml) caused significant suppression of acetylcholine-induced endothelium-dependent vasorelaxation. These results show for the first time that elevated plasma levels of apo(a) and Lp(a) do not cause endothelial dysfunction in transgenic mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call