Abstract

The aim of this study was to investigate a possible protective role of a selective endothelin-A receptor antagonist on hepatic microcirculation after ischemia/reperfusion. In a rat model, warm ischemia of the left liver lobe was induced for 90 minutes under intraperitoneal anesthesia with xylazine and ketamine. Shamoperated and untreated ischemic groups and a group treated with BSF 208075 were investigated. The effect of the endothelin-A receptor antagonist on ischemia/reperfusion was assessed by in-vivo microscopy and measurement of aspartate aminotransferase and alanine aminotransferase levels. In the untreated group, sinusoidal constriction to 70% of basal diameters was observed, leading to a significant decrease in perfusion rate. In addition, we found an increased percentage of stagnant leukocytes and platelets in sinusoids and in postsinusoidal venules (P < 0.05). A significant increase in liver enzymes was detected 6 hours after reperfusion (P < 0.05). In the treatment group, sinusoidal diameters were maintained at 108%, and perfusion rate was significantly increased (P < 0.05). Hepatocellular damage was decreased and leukocyte and platelet-endothelium interactions were reduced (P < 0.05). Our results provide evidence that the new therapeutic approach using an endothelin-A receptor antagonist is effective in reducing hepatic ischemia/reperfusion injury. It could be shown for the first time that endothelin receptor blockade also influences platelet-endothelium interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.