Abstract

Endothelin-1 (ET-1) is elevated in patients with obesity; however, its contribution to the pathophysiology related to obesity is not fully understood. Obesity is associated with dyslipidemia and insulin resistance, which may in part be mediated by inflammation and alterations to immune cell subsets within the adipose tissue. ET-1 promotes inflammation via the ET-1 type A (ETA) receptor, and blockade of ETA receptors improves dyslipidemia in patients with chronic kidney disease. We hypothesized that ET-1 causes dyslipidemia and inflammation within the adipose tissue of obese mice. To test this hypothesis, C57BL/6J mice were fed either normal diet (NMD) or high fat diet (HFD) for 8 weeks followed by 2 weeks of treatment with either vehicle or atrasentan (ETA receptor antagonist, 10mg/kg/day). HFD mice had significantly higher fat mass than NMD mice, with no significant effect of treatment with atrasentan. HFD mice had significantly higher circulating non-esterified free fatty acids, an effect that was ameliorated in mice treated with atrasentran (1.03±0.07 vs 0.58±0.02 mEq/L, p<0.05). Atrasentan-treated mice had significantly attenuated increase in liver triglycerides compared to non-treated HFD mice (3.8±0.7 vs 7.5±1.3mg/dL respectively, p<0.05). Mice treated with atrasentan had significantly improved glucose tolerance (10150±1031 vs 6563±975 AUC, p<0.05) and insulin tolerance (-2796±386 vs -9825±319 AUC, p<0.05) compared to non-treated insulin-resistant HFD mice. Plasma adiponectin, an insulin sensitizing adipokine that is inversely associated with adiposity and insulin resistance, was significantly increased in atrasentan-treated mice compared to non-treated HFD (4.8±0.1326 vs 6.5±0.3 µg/ml, p<0.05), with no differences in plasma insulin levels. Gene expression analysis of visceral fat showed improved expression of genes negatively associated with insulin resistance that were downregulated in non-treated HFD mice vs. NMD (IRS-1, PPAR-gamma, GLUT4, and adiponectin). Flow cytometric analyses of visceral adipose tissue indicated that HFD mice had a significantly higher number of both CD4+ and CD8+ T cells compared to NMD mice, which was attenuated by treatment with atrasentan. Further, eosinophils, which are important in maintaining adipose tissue health and reducing inflammation, were significantly decreased in HFD mice compared to NMD. Atrasentan treatment abolished the decrease in eosinophils. Taken together, these data indicate that ETA receptor blockade improves peripheral glucose homeostasis, dyslipidemia, and liver triglyceride levels, and also attenuates the proinflammatory immune profile in visceral adipose tissue. These data suggest a potential use for ETA receptor blockers in the treatment of obesity-associated dyslipidemia and insulin resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call