Abstract

Melanocytes synthesize melanin and transfer it to keratinocytes via dendritic processes. Keratinocytes are known to produce constitutively several factors, including endothelin-1 (ET-1), that together affect melanocyte proliferation, migration, melanogenesis, and dendrite formation. After ultraviolet (UV) irradiation, synthesis and secretion of ET-1 are up-regulated in keratinocytes. Because UV irradiation of skin is known to be associated with increased melanocyte dendricity, and because medium conditioned by UV-irradiated keratinocytes (UV-KCM) induces melanocyte dendricity to a greater degree than does baseline keratinocyte-conditioned medium (KCM), we investigated whether ET-1 promotes melanocyte dendricity. ET-1, originally recognized as a vasoconstrictive peptide, has recently been shown to stimulate melanocyte proliferation and tyrosinase activity. We now report that ET-1 supplementation of cultured melanocytes significantly increases the percentage of dendritic melanocytes, as well as dendrite length, in a dose-dependent manner. Moreover, UV-KCM was found to contain over 25-fold more ET-1 than KCM, and ET-1 supplementation of KCM induced melanocyte dendricity comparable to that induced by UV-KCM. Further, melanocyte dendricity induced by UV-KCM was significantly inhibited by the addition of anti-ET-1 monoclonal antibody to the medium, suggesting that the UV-KCM effect on melanocyte dendricity is mediated largely through ET-1. Our findings suggest that in the skin, ET-1 of keratinocyte origin promotes melanocyte dendricity in response to UV irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.