Abstract
BackgroundReduction of histone deacetylase (HDAC) 2 expression and activity may contribute to amplified inflammation in patients with severe asthma. Connective tissue growth factor (CTGF) is a key mediator of airway fibrosis in severe asthma. However, the role of the HDAC2/Sin3A/methyl-CpG-binding protein (MeCP) 2 corepressor complex in the regulation of CTGF expression in lung fibroblasts remains unclear.MethodsThe role of the HDAC2/Sin3A/MeCP2 corepressor complex in endothelin (ET)-1-stimulated CTGF production in human lung fibroblasts (WI-38) was investigated. We also evaluated the expression of HDAC2, Sin3A and MeCP2 in the lung of ovalbumin-induced airway fibrosis model.ResultsHDAC2 suppressed ET-1-induced CTGF expression in WI-38 cells. ET-1 treatment reduced HDAC2 activity and increased H3 acetylation in a time-dependent manner. Furthermore, overexpression of HDAC2 inhibited ET-1-induced H3 acetylation. Inhibition of c-Jun N-terminal kinase, extracellular signal-regulated kinase, or p38 attenuated ET-1-induced H3 acetylation by suppressing HDAC2 phosphorylation and reducing HDAC2 activity. Overexpression of both Sin3A and MeCP2 attenuated ET-1-induced CTGF expression and H3 acetylation. ET-1 induced the disruption of the HDAC2/Sin3A/MeCP2 corepressor complex and then prompted the dissociation of HDAC2, Sin3A, and MeCP2 from the CTGF promoter region. Overexpression of HDAC2, Sin3A, or MeCP2 attenuated ET-1-stimulated AP-1-luciferase activity. Moreover, Sin3A- or MeCP2-suppressed ET-1-induced H3 acetylation and AP-1-luciferase activity were reversed by transfection of HDAC2 siRNA. In an ovalbumin-induced airway fibrosis model, the protein levels of HDAC2 and Sin3A were lower than in the control group; however, no significant difference in MeCP2 expression was observed. The ratio of phospho-HDAC2/HDAC2 and H3 acetylation in the lung tissue were higher in this model than in the control group. Overall, without stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex inhibits CTGF expression by regulating H3 deacetylation in the CTGF promoter region in human lung fibroblasts. With ET-1 stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex is disrupted and dissociated from the CTGF promoter region; this is followed by AP-1 activation and the eventual initiation of CTGF production.ConclusionsThe HDAC2/Sin3A/MeCP2 corepressor complex is an endogenous inhibitor of CTGF in lung fibroblasts. Additionally, HDAC2 and Sin3A may be of greater importance than MeCP2 in the pathogenesis of airway fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.