Abstract

Treatment of brain microvessels with the three endothelin (ET) isoforms resulted in an increase of phosphoinositide turnover by activation of phospholipase C in a dose- and time-dependent manner. Both ET-1 and ET-2 are maximally effective, whereas the effect evoked by ET-3 was smaller. Concomitantly, there was an enhanced production of a platelet-activating factor (PAF)-like material. This was identified by standard and biological probes in platelets, such as induction of aggregation, phosphatidic acid (PA) production, increase of endogenous protein phosphorylation, and reversal of these responses by a PAF antagonist. The effects evoked by endothelins on phosphoinositide metabolism and PAF production were, to a certain extent, dependent on the presence of extracellular Ca2+. In addition, ET induced changes in Ca2+ dynamics, evoking an initial and rapid intracellular mobilization and influx of Ca2+ and, later, a maintained Ca2+ influx. These findings contribute to the understanding of the pathophysiological role of ET in the blood-brain barrier (BBB).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.