Abstract

Endothelin (ET) is a potent vasoconstrictory peptide with proinflammatory and profibrotic properties that exerts its biological effects through two pharmacologically distinct receptor subtypes, namely ET(A) and ET(B). In addition to its substantial contribution to normal renal function, a large body of evidence suggests that derangement of the renal ET system is involved in the initiation and progression of chronic kidney disease (CKD) in diabetes, hypertension and glomerulonephritis. Thus, the use of ET receptor antagonists (ERAs) may offer potential novel treatment strategies in CKD. Recent literature on the role of the renal ET system in the healthy kidney was reviewed. In addition, an unbiased PubMed search was performed for studies published during the last 5 years that addressed the effects of ERAs in CKD. A particular objective was to extract information regarding whether selective or nonselective ERAs may have therapeutic potential in humans. ET-1 acts primarily as an autocrine or paracrine factor in the kidney. In normal physiology, ET-1 promotes diuresis and natriuresis by local production and action through ET(B) receptors in the renal medulla. In pathology, ET-1 mediates vasoconstriction, mesangial-cell proliferation, extracellular matrix production and inflammation, effects that are primarily conveyed by ET(A) receptors. Results obtained in animal models and in humans with the use of ERAs in CKD are encouraging; nevertheless, it is still under debate which receptor subtype should be targeted. According to most studies, selective inhibition of ET(A) receptors appears superior compared with nonselective ERAs because this approach does not interfere with the natriuretic, antihypertensive and ET clearance effects of ET(B) receptors. Although preliminary data in humans are promising, the potential role of ERAs in patients with CKD and the question of which receptor subtype should be targeted can only be clarified in randomized clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.