Abstract

Downregulation of the sarcoplasmic reticulum calcium ATPase (SERCA2) is associated with diastolic dysfunction in the failing heart. Elevated plasma endothelin-1 (ET) levels are correlated with congestive heart failure suggesting that ET may play a pathophysiological role. We have investigated the ability of ET to regulate SERCA2 gene expression in isolated adult rat ventricular myocytes. We find that ET enhances net protein synthesis by approximately 40% but significantly downregulates SERCA2 mRNA expression, time dependently, by approximately 30-50%, and the expression of SERCA2 protein by approximately 50%. In myoyctes, ET binds to ET(A) receptor that couples to G(q) and G(i) proteins. Inhibition of G(q)-PLC-induced phosphoinositide (PI) hydrolysis with U73122 (1 muM) or inhibition of G(i) protein with pertussis toxin (PTX) abolishes the ability of ET to downregulate SERCA2 mRNA gene expression. Further investigation suggests that ET coupling to PTX-sensitive G(i) with consequent lowering of cAMP is required for downregulation of SERCA2 mRNA levels. Increasing intracellular cAMP quantity using cAMP-specific PDE inhibitor Ro20-1724 or cAMP analog dibutyryl-cAMP reverses ET-induced downregulation of SERCA2 mRNA levels. The data indicate that, in adult myocytes, ET downregulates SERCA2 mRNA and protein levels, and the effect requires cross-talk between G(q) and PTX-sensitive G(i) pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.