Abstract

In spite of their having sufficient immunogenicity, tumor vaccines remain largely ineffective. The mechanisms underlying this lack of efficacy are still unclear. Here we report a previously undescribed mechanism by which the tumor endothelium prevents T cell homing and hinders tumor immunotherapy. Transcriptional profiling of microdissected tumor endothelial cells from human ovarian cancers revealed genes associated with the absence or presence of tumor-infiltrating lymphocytes (TILs). Overexpression of the endothelin B receptor (ET(B)R) was associated with the absence of TILs and short patient survival time. The ET(B)R inhibitor BQ-788 increased T cell adhesion to human endothelium in vitro, an effect countered by intercellular adhesion molecule-1 (ICAM-1) blockade or treatment with NO donors. In mice, ET(B)R neutralization by BQ-788 increased T cell homing to tumors; this homing required ICAM-1 and enabled tumor response to otherwise ineffective immunotherapy in vivo without changes in systemic antitumor immune response. These findings highlight a molecular mechanism with the potential to be pharmacologically manipulated to enhance the efficacy of tumor immunotherapy in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.