Abstract

BackgroundThe endothelin B receptor (ETBR) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1α is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and subsequent proteosomal degradation.Principal FindingsHere we found that in melanoma cells ET-1, ET-2, and ET-3 through ETBR, enhance the expression and activity of HIF-1α and HIF-2α that in turn regulate the expression of vascular endothelial growth factor (VEGF) in response to ETs or hypoxia. Under normoxic conditions, ET-1 controls HIF-α stability by inhibiting its degradation, as determined by impaired degradation of a reporter gene containing the HIF-1α oxygen-dependent degradation domain encompassing the PHD-targeted prolines. In particular, ETs through ETBR markedly decrease PHD2 mRNA and protein levels and promoter activity. In addition, activation of phosphatidylinositol 3-kinase (PI3K)-dependent integrin linked kinase (ILK)-AKT-mammalian target of rapamycin (mTOR) pathway is required for ETBR-mediated PHD2 inhibition, HIF-1α, HIF-2α, and VEGF expression. At functional level, PHD2 knockdown does not further increase ETs-induced in vitro tube formation of endothelial cells and melanoma cell invasiveness, demonstrating that these processes are regulated in a PHD2-dependent manner. In human primary and metastatic melanoma tissues as well as in cell lines, that express high levels of HIF-1α, ETBR expression is associated with low PHD2 levels. In melanoma xenografts, ETBR blockade by ETBR antagonist results in a concomitant reduction of tumor growth, angiogenesis, HIF-1α, and HIF-2α expression, and an increase in PHD2 levels.ConclusionsIn this study we identified the underlying mechanism by which ET-1, through the regulation of PHD2, controls HIF-1α stability and thereby regulates angiogenesis and melanoma cell invasion. These results further indicate that targeting ETBR may represent a potential therapeutic treatment of melanoma by impairing HIF-1α stability.

Highlights

  • In melanoma hypoxic setting, the upregulation of hypoxiainducible factor (HIF)-1a, the main transcriptional factor that allows cellular adaptation to hypoxia, is associated with vascular endothelial growth factor (VEGF) expression, neovascularization, poor prognosis, and resistance to therapy [1,2,3,4]

  • In this study we identified the underlying mechanism by which ET-1, through the regulation of PHD2, controls hypoxia-inducible factor (HIF)-1a stability and thereby regulates angiogenesis and melanoma cell invasion

  • These results further indicate that targeting endothelin B receptor (ETBR) may represent a potential therapeutic treatment of melanoma by impairing HIF-1a stability

Read more

Summary

Introduction

The upregulation of hypoxiainducible factor (HIF)-1a, the main transcriptional factor that allows cellular adaptation to hypoxia, is associated with vascular endothelial growth factor (VEGF) expression, neovascularization, poor prognosis, and resistance to therapy [1,2,3,4]. It has been demonstrated that HIF-1a stabilization is essential for oncogene-driven melanocyte transformation and early stages of melanoma progression [5]. HIF-a subunit is constantly transcribed and translated, but under normal oxygen conditions, undergoes hydroxylation at two prolyl residues located in the oxygendependent degradation domain (ODDD). The increase of HIF-1a subunit is critically dependent on the three prolyl hydroxylase domain proteins termed PHD1, PHD2, and PHD3, that hydroxylate prolines Pro402 and Pro564 in the ODDD of HIF-1a [10,11,12,13]. The stability of hypoxia-inducible factor (HIF)-1a is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and subsequent proteosomal degradation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call