Abstract

Endothelin (ET)-1 causes long-lasting vasoconstriction and vascular remodeling by interacting with specific G-protein-coupled receptors in pulmonary artery smooth muscle cells (PASMCs), and thus plays an important role in the pathophysiology of pulmonary arterial hypertension. The two-pore domain K(+) channel, TASK-1, controls the resting membrane potential in human PASMCs (hPASMCs), and renders these cells sensitive to a variety of vasoactive factors, as previously shown. ET-1 may exert its vasoconstrictive effects in part by targeting TASK-1. To clarify this, we analyzed the ET-1 signaling pathway related to TASK-1 in primary hPASMCs. We employed the whole-cell patch-clamp technique combined with TASK-1 small interfering RNA (siRNA) in hPASMC and the isolated, perfused, and ventilated mouse lung model. We found that ET-1 depolarized primary hPASMCs by phosphorylating TASK-1 at clinically relevant concentrations. The ET sensitivity of TASK-1 required ET(A) receptors, phospholipase C, phosphatidylinositol 4,5-biphosphate, diacylglycerol, and protein kinase C in primary hPASMCs. The ET-1 effect on membrane potential and TASK-1 was abrogated using TASK-1 siRNA. This is the first time that the background K(+) channel, TASK-1, has been identified in the ET-1-mediated depolarization in native hPASMC, and might represent a novel pathologic mechanism related to pulmonary arterial hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.