Abstract
Endothelin-1 (ET-1) has been shown to have a constrictor effect on the airways and parenchyma; however, the roles of the ETA and ETB receptors in the ET-1-induced changes in the airway and tissue compartments have not been fully explored. Low-frequency pulmonary impedance (ZL) was measured in anaesthetized, paralysed, open-chest guinea-pigs. ZL spectra were fitted by a model to estimate airway resistance (Raw) and inertance (Iaw), and coefficients of tissue damping (G) and elastance (H), and hysteresivity (eta = G/H). Two successive doses of ET-1 (0.05 and 0.2 nmol x kg(-1)) each evoked significant dose-related increases in Raw, G, H and eta. Pretreatment with 20 nmol x kg(-1) BQ-610 (a highly selective ETA receptor antagonist) resulted in a significantly decreased elevation only in H after the lower dose of ET-1. However, all parameters changed significantly less on the administration of ET-1 after pretreatment with 80 nmol-kg(-1) BQ-610, with 20 nmol x kg(-1) ETR-P1/fl (a novel ETA receptor antagonist) or with 20 nmol x kg(-1) IRL 1038 (an ETB receptor antagonist). The results of the separate assessments of the airway and tissue mechanics demonstrate that endothelin-1 induces airway and parenchymal constriction via stimulation of both receptor types in both compartments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.