Abstract

Nuclear Ca2+ plays a key role in the regulation of gene expression. Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3)] might be an important regulator of nuclear Ca2+ but its contribution to nuclear Ca2+ signalling in adult cardiomyocytes remains elusive. We tested the hypothesis that endothelin-1 enhances nuclear Ca2+ concentration transients (CaTs) in rabbit atrial myocytes through Ins(1,4,5)P3-induced Ca(2+) release from perinuclear stores. Cytoplasmic and nuclear CaTs were measured simultaneously in electrically stimulated atrial myocytes using confocal Ca2+ imaging. Nuclear CaTs were significantly slower than cytoplasmic CaTs, indicative of compartmentalisation of intracellular Ca2+ signalling. Endothelin-1 elicited a preferential (10 nM) or a selective (0.1 nM) increase in nuclear versus cytoplasmic CaTs. This effect was abolished by inhibition of endothelin-1 receptors, phospholipase C and Ins(1,4,5)P3 receptors. Fractional Ca2+ release from the sarcoplasmic reticulum and perinuclear stores was increased by endothelin-1 at an otherwise unaltered Ca2+ load. Comparable increases of cytoplasmic CaTs induced by beta-adrenoceptor stimulation or elevation of extracellular Ca2+ could not mimic the endothelin-1 effects on nuclear CaTs, suggesting that endothelin-1 specifically modulates nuclear Ca2+ signalling. Thus, endothelin-1 enhances nuclear CaTs in atrial myocytes by increasing fractional Ca2+ release from perinuclear stores. This effect is mediated by the coupling of endothelin receptor A to PLC-Ins(1,4,5)P3 signalling and might contribute to excitation-transcription coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call