Abstract

AimsAging is a major risk factor for carotid artery disease and stroke. Endothelin-1 (ET-1) and angiotensin II (Ang II) are important modifiers of vascular disease, partly through increased activity of NADPH oxidase and vasoconstrictor prostanoids. Since the renin–angiotensin and endothelin systems become activated with age, we hypothesized that aging affects NADPH oxidase- and prostanoid-dependent contractions to ET-1 and Ang II. Main methodsCarotid artery rings of young (4month-old) and old (24month-old) C57BL6 mice were pretreated with the NO synthase inhibitor L-NAME to exclude differential effects of NO. Contractions to ET-1 and Ang II were determined in the presence and absence of the NADPH oxidase-selective inhibitor gp91ds-tat or the thromboxane-prostanoid receptor antagonist SQ 29,548. Gene expression of endothelin and angiotensin receptors was measured by qPCR. Key findingsAging reduced ET-1-induced contractions and diminished ETA but increased ETB receptor gene expression levels. Gp91ds-tat inhibited contractions to ET-1 in young and to a greater extent in old animals, whereas SQ 29,548 had no effect. Ang II-induced contractions were weak compared to ET-1 and unaffected by aging, gp91ds-tat, and SQ 29,548. Aging had also no effect on AT1A and AT1B receptor gene expression levels. SignificanceAging in carotid arteries decreases ETA receptor gene expression and responsiveness to ET-1, which nevertheless becomes increasingly dependent upon NAPDH oxidase activity with age; responses to Ang II and gene expression of its receptors are however unaffected. These findings suggest that physiological aging differentially regulates functional responses to G protein-coupled receptor agonists and the signaling pathways associated with their activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call