Abstract
Mechanically, poly(vinyl alcohol) (PVA)-based cryogels are extremely well suited for vascular tissue engineering applications. However, their surface properties lead to a slow rate of endothelialization, and the mode of cell attachment leaves the endothelium susceptible to removal under physiological shear stress conditions. In this study, abrupt and ramped disturbed shear stress conditions created by a turbulent orbital flow were used to examine endothelialization on PVA/gelatin cryogels. Cell proliferation rate and apoptosis were evaluated by fluorescent activated cell sorter (FACS) analysis, and the expression of cell-adhesion molecules was used to evaluate the response of cells on cryogels to static and shear conditions by real-time polymerase chain reaction (RT-PCR). Application of a ramped shear stress had a profound effect on endothelial cell proliferation (22.30 +/- 0.20-fold increase), necrosis (eliminated), apoptosis (1.04 +/- 0.18 increase), and overall facilitation of endothelialization while concomitantly increasing nitric oxide (NO) synthesis levels. Ramped shear stress was also effective in helping the retention of the endothelial cells on the cryogel surface, whereas abrupt application caused widespread removal. Under static conditions, Selectin-P expression decreased, whereas both inter-cellular adhesion molecule (ICAM) and platelet endothelial cell adhesion molecule (PECAM)-I expression increased on cryogels over a 10-day culture period. Under both shear stress conditions, Selectin-P expression was decreased both on cryogels and tissue culture polystyrene (TCPS). Controlled application of disturbed shear stress shortens endothelialization times on cryogel surfaces, in contrast to the established antiproliferative effect of shear stress caused by laminar flow, without compromising their functionality. This demonstrates how such mechanical stimuli can be exploited to alter cellular behavior and facilitate the required outcomes for tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.