Abstract

Means to prevent thrombus extension and local recurrence remain suboptimal, in part because of the limited effectiveness of existing thrombolytics. In theory, plasminogen activators could be used for this purpose if they could be anchored to the vascular lumen by targeting stably expressed, noninternalized determinants such as platelet-endothelial-cell adhesion molecule 1 (PECAM-1). We designed a recombinant molecule fusing low-molecular-weight single-chain prourokinase plasminogen activator (lmw-scuPA) with a single-chain variable fragment (scFv) of a PECAM-1 antibody to generate the prodrug scFv/lmw-scuPA. Cleavage by plasmin generated fibrinolytically active 2-chain lmw-uPA. This fusion protein (1) bound specifically to PECAM-1-expressing cells; (2) was rapidly cleared from blood after intravenous injection; (3) accumulated in the lungs of wild-type C57BL6/J, but not PECAM-1 null mice; and (4) lysed pulmonary emboli formed subsequently more effectively than lmw-scuPA, thereby providing support for the concept of thromboprophylaxis using recombinant scFv-fibrinolytic fusion proteins that target endothelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.