Abstract

Intracranial atherosclerotic disease (ICAD) has been characterized by the degree of arterial stenosis and downstream hypoperfusion, yet microscopic derangements of endothelial shear stress at the luminal wall may be key determinants of plaque growth, vascular remodeling and thrombosis that culminate in recurrent stroke. Platelet interactions have similarly been a principal focus of treatment, however, the mechanistic basis of anti-platelet strategies is largely extrapolated rather than directly investigated in ICAD. Platelet FcγRIIa expression has been identified as a potent risk factor in cardiovascular disease, as elevated expression markedly increases the risk of recurrent events. Differential activation of the platelet FcγRIIa receptor may also explain the variable response of individual patients to anti-platelet medications. We review existing data on endothelial shear stress and potential interactions with the platelet FcγRIIa receptor that may alter the evolving impact of ICAD, based on local pathophysiology at the site of arterial stenosis. Current methods for quantification of endothelial shear stress and platelet activation are described, including tools that may be readily adapted to the clinical realm for further understanding of ICAD.

Highlights

  • Intracranial atherosclerotic disease (ICAD) is the most common cause of stroke worldwide [1, 2]

  • ICAD Shear Stress & FcγRIIa one individual to the. Such wall shear stress can be readily quantified with computational fluid dynamics (CFD) from non-invasive CT angiography (CTA), routinely acquired in patients with minor stroke or transient ischemic attack (TIA) due to ICAD

  • Poor understanding of ICAD pathophysiology has been a critical barrier to progress in the field of stroke prevention

Read more

Summary

INTRODUCTION

Intracranial atherosclerotic disease (ICAD) is the most common cause of stroke worldwide [1, 2]. ICAD Shear Stress & FcγRIIa one individual to the Such wall shear stress can be readily quantified with computational fluid dynamics (CFD) from non-invasive CT angiography (CTA), routinely acquired in patients with minor stroke or transient ischemic attack (TIA) due to ICAD. These shear stress changes in blood flow promote platelet aggregation and thereby alter the response to anti-platelet therapy. Given the shared pathology of coronary artery disease and ICAD, the data suggest that individual differences in CFD-derived WSS and platelet FcγRIIa expression may inform a precision medicine strategy to prevent recurrent stroke. High shear stress and the oscillatory shear index (OSI) can be measured with CTA techniques and are closely linked to platelet activity [10,11,12,13]

PLATELET REACTIVITY AND PLATELET EXPRESSION OF FCγRIIA
Platelet FcγRIIa
DISCUSSION
Findings
AUTHOR CONTRIBUTIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call