Abstract

Vascular endothelial growth factor (VEGF), a major mediator of angiogenesis, exerts its proangiogenic action by binding to VEGFR2 (VEGF receptor 2), the activity of which is further modulated by VEGFR2 coreceptors such as neuropilins. However, whether VEGFR2 is regulated by additional coreceptors is not clear. To investigate whether SCUBE2 (signal peptide-CUB-EGF domain-containing protein 2), a peripheral membrane protein expressed in vascular endothelial cells (ECs) known to bind other signaling receptors, functions as a VEGFR2 coreceptor and to verify the role of SCUBE2 in the VEGF-induced angiogenesis. SCUBE2 lentiviral overexpression in human ECs increased and short hairpin RNA knockdown inhibited VEGF-induced EC growth and capillary-like network formation on Matrigel. Like VEGF, endothelial SCUBE2 was upregulated by hypoxia-inducible factor-1α at both mRNA and protein levels. EC-specific Scube2 knockout mice were not defective in vascular development but showed impaired VEGF-induced neovascularization in implanted Matrigel plugs and recovery of blood flow after hind-limb ischemia. Coimmunoprecipitation and ligand-binding assays showed that SCUBE2 forms a complex with VEGF and VEGFR2, thus acting as a coreceptor to facilitate VEGF binding and augment VEGFR2 signal activity. SCUBE2 knockdown or genetic knockout suppressed and its overexpression promoted the VEGF-induced activation of downstream proangiogenic and proliferating signals, including VEGFR2 phosphorylation and mitogen-activated protein kinase or AKT activation. Endothelial SCUBE2 may be a novel coreceptor for VEGFR2 and potentiate VEGF-induced signaling in adult angiogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.