Abstract

Ischemia-reperfusion (I/R) injury to the kidney, a major cause of acute renal failure in humans, is associated with a high mortality, and the development of a new therapeutic strategy is therefore highly desirable. In this study, we examined the therapeutic potential of implantation of endothelial progenitor cells (EPCs) isolated from Wharton's jelly of human umbilical cords in the treatment of renal I/R injury in mice. To visualize the localization of the transplanted EPCs, the cells were labeled with Q-tracker before injection into the renal capsule. Mice with renal I/R injury showed a significant increase in blood urea nitrogen and creatinine levels, and these effects were decreased by EPC transplantation. The kidney injury score in the mice with I/R injury was also significantly decreased by EPC transplantation. EPC transplantation increased the microvascular density, and some of the EPCs surrounded and were incorporated into microvessels. In addition, EPC transplantation inhibited the I/R-induced cell apoptosis of endothelial, glomerular, and renal tubular cells, as demonstrated by TUNEL staining, and significantly reduced reactive oxygen species production and the expression of the inflammatory chemokines macrophage inflammatory protein-2 and keratinocyte-derived cytokine, as shown by immunostaining and ELISA. Moreover, EPC transplantation reduced I/R-induced fibrosis, as demonstrated by immunostaining for S100A4, a fibroblast marker, and by Jones silver staining. To our knowledge, this is the first report that transplantation of EPCs from Wharton's jelly of human umbilical cords might provide a novel therapy for ischemic acute kidney injury by promoting angiogenesis and inhibiting apoptosis, inflammation, and fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.