Abstract

Brain arteriovenous malformations (BAVMs) can cause lethal hemorrhagic stroke and have no effective treatment. The cellular and molecular basis for this disease is largely unknown. We have previously shown that expression of constitutively-active Notch4 receptor in the endothelium elicits and maintains the hallmarks of BAVM in mice, thus establishing a mouse model of the disease. Our work suggested that Notch pathway could be a critical molecular mediator of BAVM pathogenesis. Here, we investigated the hypothesis that upregulated Notch activation contributes to the pathogenesis of human BAVM. We examined the expression of the canonical Notch downstream target Hes1 in the endothelium of human BAVMs by immunofluorescence, and showed increased levels relative to either autopsy or surgical biopsy controls. We then analyzed receptor activity using an antibody to the activated form of the Notch1 receptor, and found increased levels of activity. These findings suggest that Notch activation may promote the development and even maintenance of BAVM. We also detected increases in Hes1 and activated Notch1 expression in our mouse model of BAVM induced by constitutively active Notch4, demonstrating molecular similarity between the mouse model and the human disease. Our work suggests that activation of Notch signaling is an important molecular candidate in BAVM pathogenesis and further validates that our animal model provides a platform to study the progression as well as the regression of the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.