Abstract

In the aorta of male spontaneously hypertensive rats (SHR), but not in that of normotensive Wistar-Kyoto rats (WKY), contractions to phenylephrine obtained in the presence of L-NAME [inhibitor of nitric oxide synthase (NOS)] and indomethacin (inhibitor of cyclooxygenase) are inhibited by an unknown endothelium-derived factor. The present study aimed to identify the mechanism underlying this endothelium-dependent inhibition in the SHR aorta. Aortic rings of male SHR and WKY, with and without endothelium, were suspended in organ chambers in the presence of indomethacin and L-NAME for the measurement of isometric tension. Contractions to phenylephrine were smaller in SHR aortae with endothelium than in those without, but were similar in the two types of preparations of WKY aortae. The endothelium-dependent, NOS-independent inhibition of phenylephrine-induced contraction was abolished by oxyhemoglobin [extracellular NO scavenger], carboxy-PTIO (NO scavenger) and ODQ (inhibitor of soluble guanylyl cyclase). It was unmasked not only by indomethacin but also by apocynin (antioxidant), but inhibited by diphenyleneiodonium (inhibitor of flavoproteins including cytochrome P450 reductase). The cytochrome P450 reductase protein expression was similar in SHR and WKY aortae. However, the level of nitrate and nitrite, substrates of cytochrome P450 reductase, were higher in SHR than WKY plasma and aortae. Therefore, in SHR but not WKY aortae, eNOS-independent NO is formed by cytochrome P450 reductase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.