Abstract

Rupture of an intracranial aneurysm (subarachnoid hemorrhage) is a potentially devastating condition frequently complicated by delayed cerebral ischemia from sustained contraction of intracranial arteries (cerebral vasospasm). There is mounting evidence linking the formation of intracranial aneurysms and the pathogenesis of post-subarachnoid hemorrhage vasospasm to aberrant bioavailability and action of the vasodilator molecule nitric oxide generated by isoforms of nitric oxide synthase. In humans, the gene encoding the endothelial isoform of nitric oxide synthase (eNOS) is known to be polymorphic, with certain polymorphisms associated with increased cardiovascular disease susceptibility. In this prospective clinical study involving 141 participants, we used gene microarray technology to demonstrate that the eNOS gene intron-4 27-base pair variable number tandem repeat polymorphism (eNOS 27 VNTR) predicts susceptibility to intracranial aneurysm rupture, while the eNOS gene promoter T-786C single nucleotide polymorphism (eNOS T-786C SNP) predicts susceptibility to post-subarachnoid hemorrhage vasospasm. We believe that genetic information such as this, which can be obtained expeditiously at the time of diagnosis, may be used as a helpful adjunct to other clinical information aimed at predicting and favorably modifying the clinical course of persons with intracranial aneurysms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.