Abstract

BackgroundNitric oxide (NO) has numerous functions in the kidney, including control of renal and glomerular hemodynamics, by interfering at multiple pathological and physiologically critical steps of nephron function. Endothelial NOS (eNOS) gene has been considered a potential candidate gene to diabetic nephropathy (DN) susceptibility. Endothelial nitric oxide synthase gene (eNOS-3) polymorphisms have been associated with DN, however some studies do not confirm this association. The analyzed polymorphisms were 4b/4a, T-786C, and G986T.MethodsThe Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement was used in this report. Case–control studies that had diabetic patients with DN as cases and diabetic patients without nephropathy as controls, as well as that evaluated at least one of the three polymorphisms of interest were considered eligible. All studies published up until December 31st, 2012 were identified by searching electronic databases. Hardy-Weinberg equilibrium assessment was performed. Gene-disease association was measured using odds ratio estimation based on the following genetic contrast/models: (1) allele contrast; (2) additive model; (3) recessive model; (4) dominant model and (4) co-dominant model.ResultsTwenty-two studies were eligible for meta-analysis (4b/a: 15 studies, T-786C: 5 studies, and G984T: 12 studies). Considering 4b/a polymorphism, an association with DN was observed for all genetic models: allele contrast (OR = 1.14, CI: 1.04-1.25); additive (OR = 1.77, CI: 1.37-2.28); recessive (OR = 1.77, CI: 1.38-2,27); dominant (OR = 1.12, CI: 1.01-1.24), with the exception for co-dominance model. As well, T-786C polymorphism showed association with all models, with exception for co-dominance model: allele contrast (OR = 1.22, CI: 1.07-1.39), additive (OR = 1.52, CI: 1.18-1.97), recessive (OR = 1.50, CI: 1.16-1.93), and dominant (OR = 1.11, CI: 1.01-1.23). For the G894T polymorphism, an association with DN was observed in allelic contrast (OR = 1.12, CI: 1.03-1.25) and co-dominance models (OR = 1.13, CI: 1.04-1.37).ConclusionsIn the present study, there was association of DN with eNOS 4b/a and T-786C polymorphism, which held in all genetic models tested, except for co-dominance model. G894T polymorphism was associated with DN only in allele contrast and in co-dominance model. This data suggested that the eNOS gene could play a role in the development of DN.

Highlights

  • Nitric oxide (NO) has numerous functions in the kidney, including control of renal and glomerular hemodynamics, by interfering at multiple pathological and physiologically critical steps of nephron function

  • Three-hundred and nine studies were identified, and 281 were excluded based on review of titles and abstracts (70 animal experimental studies, 17 pharmacological studies, 86 without adequate cases or controls, 58 without the genes or polymorphisms of interest, 3 review articles, meta-analysis, 35 studies with multiple publications of the same data presented with different titles, 7 no accesses to original data even after contacting authors)

  • The phenotype definitions as cases or controls were appropriated, but none of the studies included information if genotyping was performed by personnel blinded to clinical status

Read more

Summary

Introduction

Nitric oxide (NO) has numerous functions in the kidney, including control of renal and glomerular hemodynamics, by interfering at multiple pathological and physiologically critical steps of nephron function. Endothelial nitric oxide synthase gene (eNOS-3) polymorphisms have been associated with DN, some studies do not confirm this association. NOS system consists of three distinct isoforms, encoded by three distinct genes, including neuronal (nNOS or NOS-1), inducible (iNOS or NOS-2), and endothelial (eNOS or NOS-3). The gene encoding eNOS is located on chromosome 7 (7q35-q36) and contains 26 exons, with an entire length of 21 kb [3,4]. NO has numerous functions in the kidney, including control of renal and glomerular hemodynamics, by interfering at multiple pathological and physiologically critical steps of nephron function. The net effect of NO in the kidney is to promote natriuresis and diuresis, along with renal adaptation to dietary salt intake [7,8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call