Abstract
There is evidence that reactive nitrogen species are implicated in diabetic vascular complications, but their sources and targets remain largely unidentified. In the present study, we aimed to study the roles of endothelial nitric oxide synthase (eNOS) in diabetes. Exposure of isolated bovine coronary arteries to high glucose (30 mmol/l d-glucose) but not to osmotic control mannitol (30 mmol/l) switched angiotensin II-stimulated prostacyclin (PGI(2))-dependent relaxation into a persistent vasoconstriction that was sensitive to either indomethacin, a cyclooxygenase inhibitor, or SQ29548, a selective thromboxane receptor antagonist. In parallel, high glucose, but not mannitol, significantly increased superoxide and 3-nitrotyrosine in PGI(2) synthase (PGIS). Concurrent administration of polyethylene-glycolated superoxide dismutase (SOD), l-nitroarginine methyl ester, or sepiapterin not only reversed the effects of high glucose on both angiotensin II-induced relaxation and PGI(2) release but also abolished high-glucose-enhanced PGIS nitration, as well as its association with eNOS. Furthermore, diabetes significantly suppressed PGIS activity in parallel with increased superoxide and PGIS nitration in the aortas of diabetic C57BL6 mice but had less effect in diabetic mice either lacking eNOS or overexpressing human SOD (hSOD(+/+)), suggesting an eNOS-dependent PGIS nitration in vivo. We conclude that diabetes increases PGIS nitration in vivo, likely via dysfunctional eNOS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.