Abstract

Overnutrition and insulin resistance are especially prominent risk factors for the development of cardiac diastolic dysfunction in females. We recently reported that consumption of a Western diet (WD) containing excess fat (46%), sucrose (17.5%), and high fructose corn syrup (17.5%) for 16 weeks resulted in cardiac diastolic dysfunction and aortic stiffening in young female mice and that these abnormalities were prevented by mineralocorticoid receptor blockade. Herein, we extend those studies by testing whether WD-induced diastolic dysfunction and factors contributing to diastolic impairment, such as cardiac fibrosis, hypertrophy, inflammation, and impaired insulin signaling, are modulated by excess endothelial cell mineralocorticoid receptor signaling. Four-week-old female endothelial cell mineralocorticoid receptor knockout and wild-type mice were fed mouse chow or WD for 4 months. WD feeding resulted in prolonged relaxation time, impaired diastolic septal wall motion, and increased left ventricular filling pressure indicative of diastolic dysfunction. This occurred in concert with myocardial interstitial fibrosis and cardiomyocyte hypertrophy that were associated with enhanced profibrotic (transforming growth factor β1/Smad) and progrowth (S6 kinase-1) signaling, as well as myocardial oxidative stress and a proinflammatory immune response. WD also induced cardiomyocyte stiffening, assessed ex vivo using atomic force microscopy. Conversely, endothelial cell mineralocorticoid receptor deficiency prevented WD-induced diastolic dysfunction, profibrotic, and progrowth signaling, in conjunction with reductions in macrophage proinflammatory polarization and improvements in insulin metabolic signaling. Therefore, our findings indicate that increased endothelial cell mineralocorticoid receptor signaling associated with consumption of a WD plays a key role in the activation of cardiac profibrotic, inflammatory, and growth pathways that lead to diastolic dysfunction in female mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.