Abstract
Existing evidence suggests that endothelial lipase (EL) plays an important role in high-densitylipoprotein (HDL) metabolism. Because rabbits are a useful animal model for the study of human lipid metabolism and atherosclerosis, we characterized rabbit EL (rEL) expression and investigated its relationship with plasma HDL levels in normal and hyperlipidemic rabbits. We cloned the rEL cDNA and analyzed the EL tissue expression using Northern blotting, real-time RT-PCR, Western blotting, and in situ hybridization. We evaluated the effects of rEL antisense on plasma HDL levels. We found that rEL mRNA was highly expressed in cholesterol synthesis-related organs, including the liver, testis, and adrenal along with its expression in the lung, kidney, bone marrow, and small intestine. Interestingly, Watanabe heritable hyperlipidemic (WHHL) rabbits, a model of human familial hypercholesterolemia, had lower plasma levels of HDLs than normal rabbits. The plasma HDL levels in WHHL rabbits were inversely associated with high levels of plasma rEL proteins and hepatic expression of rEL mRNA. Injection of rEL-specific antisense oligonucleotides into rabbits resulted in the elevation of plasma large HDLs. Furthermore, we demonstrated that rEL mRNA was expressed by both endothelial cells and macrophages in the lesions of aortic atherosclerosis of WHHL rabbits. rEL is expressed in multiple tissues and may have many physiological and pathophysiological functions, such as in the regulation of cholesterol metabolism and atherosclerosis. Our results suggest that EL is an important regulator of plasma HDL levels in rabbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.