Abstract

Fe-based materials are currently considered for manufacturing biodegradable coronary stents. Here we show that Fe has a strong potential to generate hydroxyl radicals (HO) during corrosion. This HO generation, but not corrosion, can be inhibited by catalase. Oxidative stress was observed (increased HO-1 expression) in aortic rings after direct exposure to Fe, but not in the presence of catalase or after indirect exposure. This oxidative stress response induced an uncoupling of eNOS in, and a consequent reduced NO production by endothelial cells exposed to Fe. In isolated rat aortic rings NO production was also reduced by HO generated during Fe corrosion, as indicated by the protective role of catalase. Finally, all these mechanisms contributed to impaired endothelium-dependent relaxation in aortic rings caused by HO generated during the direct contact with Fe. This deleterious impact of Fe corrosion on the endothelial function should be integrated when considering the use of biodegradable Fe-based alloys for vascular implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call