Abstract

The aim of the study is to investigate whether endothelial cells (ECs) promoted the capacity of stem-like cell formation in medulloblastoma (MB) and whether the mechanism of action was associated with mediation of Notch signaling pathway. Co-culture experiment was conducted to particularly understand the potential role of ECs in promoting phenotype and gene expression of MB stem-like cells. Self-renewal capacity and tumor cell population were measured by sphere-forming assay and flow cytometry, respectively. To further clarify the effects of ECs on the formation of MB stem-like cells, the expression of genes and protein in MB stem-like cells (CCND1, CDK6, c-MYC, and Bmi-1) and Notch (Notch2, Jagged 1, Hes-1, and Hey-2) was quantified by quantitative real-time PCR (qRT-PCR) and western blot, respectively. Also, observed mediation of ECs in regulation of tumor cell stemness by Notch activation was observed when the co-cultures were treated with γ-secretase inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT)). Further investigation was conducted for the effects of ECs on the tumorigenesis in vivo of MB cells when co-cultures were inoculated into a nude mouse after treated with DAPT. Afterwards, tumor size and volume were measured. The sphere-forming rate and cell ratio of stem-like cells were significantly increased. Furthermore, the expression of genes and protein in stem-like cells and Notch was obviously upregulated although treated with γ-secretase inhibitor. Moreover, tumor size and volume were dramatically magnified. This study revealed that Notch pathway activation played a key role in the formation of stem-like cells in MB and had valuable meaning for further investigation of targeted therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.