Abstract
Inflammation that develops with the release of chemokines and cytokines during acute kidney injury (AKI) has been shown to participate in functional renal recovery. Although a major research focus has been on the role of macrophages, the family of C-X-C motif chemokines that promote neutrophil adherence and activation also increases with kidney ischemia-reperfusion (I/R) injury. This study tested the hypothesis that intravenous delivery of endothelial cells (ECs) that overexpress (C-X-C motif) chemokine receptors 1 and 2 (CXCR1 and CXCR2, respectively) improves outcomes in kidney I/R injury. Overexpression of CXCR1/2 enhanced homing of endothelial cells to I/R-injured kidneys and limited interstitial fibrosis, capillary rarefaction, and tissue injury biomarkers (serum creatinine concentration and urinary kidney injury molecule-1) following AKI and also reduced expression of P-selectin and the rodent (C-X-C motif) chemokine cytokine-induced neutrophil chemoattractant (CINC)-2β as well as the number of myeloperoxidase-positive cells in the postischemic kidney. The serum chemokine/cytokine profile, including CINC-1, showed similar reductions. These findings were not observed in rats given endothelial cells transduced with an empty adenoviral vector (null-ECs) or a vehicle alone. These data indicate that extrarenal endothelial cells that overexpress CXCR1 and CXCR2, but not null-ECs or vehicle alone, reduce I/R kidney injury and preserve kidney function in a rat model of AKI.NEW & NOTEWORTHY Inflammation facilitates kidney ischemia-reperfusion (I/R) injury. Endothelial cells (ECs) that were modified to overexpress (C-X-C motif) chemokine receptor (CXCR)1/2 (CXCR1/2-ECs) were injected immediately following kidney I/R injury. The interaction of CXCR1/2-ECs, but not ECs transduced with an empty adenoviral vector, with injured kidney tissue preserved kidney function and reduced production of inflammatory markers, capillary rarefaction, and interstitial fibrosis. The study highlights a functional role for the C-X-C chemokine pathway in kidney damage following I/R injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.