Abstract
Within the artery intima, endothelial cells respond to mechanical cues and changes in subendothelial matrix stiffness. Recently, we found that the aging subendothelial matrix stiffens heterogeneously and that stiffness heterogeneities are present on the scale of one cell length. However, the impacts of these complex mechanical micro-heterogeneities on endothelial cells have not been fully understood. Here, we simulate the effects of matrices that mimic young and aged vessels on single- and multi-cell endothelial cell models and examine the resulting cell basal strain profiles. Although there are limitations to the model which prohibit the prediction of intracellular strain distributions in alive cells, this model does introduce mechanical complexities to the subendothelial matrix material. More heterogeneous basal strain distributions are present in the single- and multi-cell models on the matrix mimicking an aged artery over those exhibited on the young artery. Overall, our data indicate that increased heterogeneous strain profiles in endothelial cells are displayed in silico when there is an increased presence of microscale arterial mechanical heterogeneities in the matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.