Abstract
Oligodendrocyte precursor cells (OPCs) migrate extensively using blood vessels as physical scaffolds in the developing central nervous system. Although the association of OPCs with the vasculature is critical for migration, the regulatory mechanisms important for OPCs proliferative and oligodendrocyte development are unknown. Here, a correlation is demonstrated between the developing vasculature and OPCs response during brain development. Deletion of endothelial stimulator of interferon genes (STING) disrupts angiogenesis by inhibiting farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and thereby reducing cholesterol synthesis. Furthermore, the perturbation of metabolic homeostasis in endothelial cells increases interleukin 17D production which mediates the signal transduction from endothelial cells to OPCs, which inhibits oligodendrocyte development and myelination and causes behavioral abnormalities in adult mice. Overall, these findings indicate how the endothelial STING maintains metabolic homeostasis and contributes to oligodendrocyte precursor cells response in the developing neocortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.