Abstract

Thromboembolic events are the main cause of mortality in BCR-ABL1-negative myeloproliferative neoplasms (MPNs) but their underlying mechanisms are largely unrecognized. The Janus kinase 2 (JAK2)V617F mutation is the most frequent genetic alteration leading to MPN. Usually found in haematopoietic progenitors and stem cells, this mutation has also been described in endothelial cells (ECs) of MPN patients. In this study, we have questioned the impact of the JAK2V617F mutation on EC phenotype and functions. We developed an induced pluripotent stem cells strategy to compare JAK2 mutant and wild-type ECs. Transcriptomic assays showed that several genes and pathways involved in inflammation, cell adhesion and thrombotic events were over-represented in JAK2V617F ECs and expression levels of von Willebrand factor and P-selectin (CD62P) proteins were increased. Finally, we found that leucocytes from MPN patients adhere more tightly to JAK2V617F ECs. Our results show that JAK2V617F ECs have a pro-inflammatory and pro-thrombotic phenotype and were functionally pro-adherent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.