Abstract

An increased recognition of the role of endothelial cells in disease and the development of methods for endothelial cell culture has led to an upsurge inin vitrostudies of endothelial cell function. However, the cells most often used for these studies do not reflect thein vivoheterogeneity of endothelial cells. To assess intrinsic differences between large and small vessel endothelial cells from different tissues, primary cultures of endothelial cells from capillaries (brain, lung, and adipose tissue) and a large vessel (aorta) of sheep were isolated, purified by fluorescence-activated cell sorting of acetylated low density lipoprotein (DiI-Ac-LDL) labeled cells, and characterized by phase contrast and ultrastructural morphology, expression of von Willebrand factor, and lack of expression of cytokeratin, smooth muscle actin, and glial fibrillary acidic protein (GFAP). Although all endothelial cells were cultured in the same media, only the brain microvascular endothelial cells demonstrated tight junctions by electron microscopy. Only the large vessel (aortic) endothelial cells contained Weibel–Palade bodies. Expression of von Willebrand factor decreased with passage of cells, but uptake of DiI-Ac-LDL was consistently positive regardless of culture conditions or passage number. These studies demonstrate that the unique ultrastructural characteristics of microvascular and macrovascular endothelial cells are intrinsic to the cells themselves and are not determined by differential culture conditions. This system allows the study of pathologic processes that affect endothelial cells of certain target organs selectively and should more accurately represent the response of tissue-specific endothelial cells in inflammatory processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.