Abstract

Atherosclerosis is a progressive disorder of the arterial wall and the underlying cause of cardiovascular diseases such as heart attack and stroke. Today, atherosclerosis is recognized as a complex disease with a strong inflammatory component. The nuclear factor-kappaB (NF-kappaB) signaling pathway regulates inflammatory responses and has been implicated in atherosclerosis. Here, we addressed the function of NF-kappaB signaling in vascular endothelial cells in the pathogenesis of atherosclerosis in vivo. Endothelium-restricted inhibition of NF-kappaB activation, achieved by ablation of NEMO/IKKgamma or expression of dominant-negative IkappaBalpha specifically in endothelial cells, resulted in strongly reduced atherosclerotic plaque formation in ApoE(-/-) mice fed with a cholesterol-rich diet. Inhibition of NF-kappaB abrogated adhesion molecule induction in endothelial cells, impaired macrophage recruitment to atherosclerotic plaques, and reduced expression of cytokines and chemokines in the aorta. Thus, endothelial NF-kappaB signaling orchestrates proinflammatory gene expression at the arterial wall and promotes the pathogenesis of atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.