Abstract

Liver kinase B1 (LKB1), a tumor suppressor, is a central regulator of cell polarity and energy homeostasis. The role of LKB1 in endothelial function in vivo has not been explored. Endothelium-specific LKB1 knockout (LKB1(endo-/-)) mice were generated by cross-breeding LKB1(flox/flox) mice with VE-Cadherin-Cre mice. LKB1(endo-/-) mice exhibited hypertension, cardiac hypertrophy, and impaired endothelium-dependent relaxation. LKB1(endo-/-) endothelial cells exhibited reduced endothelial nitric oxide synthase activity and AMP kinase (a downstream enzyme of LKB1) phosphorylation at Thr172 compared with wild-type (WT) cells. In addition, the levels of caveolin-1 were higher in the endothelial cells of LKB1(endo-/-) mice, and knockdown of caveolin-1 by siRNA normalized endothelial nitric oxide synthase activity. Human antigen R bound with the adenylate-uridylate-rich elements of caveolin-1 mRNA 3' untranslated region, resulting in the increased stability of caveolin-1, and genetic knockdown of human antigen R decreased the expression of caveolin-1 in LKB1-deficient endothelial cells. Finally, adenoviral overexpression of constitutively active AMP kinase, but not green fluorescent protein, decreased caveolin-1, lowered blood pressure, and improved endothelial function in LKB1(endo-/-) mice in vivo. Our findings indicate that endothelial LKB1 regulates endothelial nitric oxide synthase activity, endothelial function, and blood pressure by modulating AMP kinase-mediated caveolin-1 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.