Abstract
The seeding and/or in-growth of endothelial cells on a number of blood-contacting implants are a concern for both biomaterials and tissue engineering. While endothelialization has been viewed positively, owing to their ability to regulate both smooth muscle and blood, there is evidence which suggests that endothelial cells on a nonoptimized surface may be counterproductive. The present study describes the experimentation designed to elucidate the effect of culture substrate on intracellular superoxide (SO) levels, a marker for endothelial cell dysfunction. The adaptation of the use of dihydroethidium under physiologically relevant shearing conditions is also reported. The present study describes a standardized method for the use of dihydroethidium as a marker for intracellular oxidative stress under physiologic shear. Levels of hydrogen peroxide (oxidative stress producing agent) are optimized to a minimum of 60 microM (under static conditions) to allow for the detection of SO within the free radical scavenging environment. A flow rate of 24.4 mL/min is applied and found to produce physiologically relevant shear stress (8.2 dynes/cm(2)) within the system under study. Dihydroethidium is a useful marker for assessing intracellular oxidative stress in studies that require shear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.