Abstract

Background: Bypass surgery for atherosclerosis is confronted with the absence of endothelial cells in the lumen of vascular prosthesis in humans. This imposes a risk of thrombosis. New biomaterials try to minimize surface thrombogenicity. Methods: Knitted polyethylene terephthalate (PET) vascular graft patches were impregnated with degradable polyester polymers: poly (L-lactide-co-glycolide) (PLG) or poly (L-lactide-co-glycolide-co-e-caprolactone) (PLGC). The luminal surface was coated with collagen type I (Co) to which extracellular matrix proteins laminin (LM), fibronectin (FN), or surface fibrin gel (Fb) were attached. Three types of prostheses (PET, PET–PLG and PET– PLGC) and 5 types of protein assemblies (+Co, +Co/LM, +Co/FN, +Co/Fb, +Co/Fb/FN) were fabricated. Scanning electron microscopy and measurements of the water contact angles were performed. The development of a bovine endothelial cell layer was studied in a static culture for 1 week. Results: The cells reached confluence on all PET surfaces with the highest final density on +Co/FN. Impregnation of PET with polymers made it less adhesive for cells in the following order: PET > PET–PLG > PET– PLGC. However, additional coating with the protein assemblies enhanced the endothelial cell growth, especially on fibrin-containing surfaces. Conclusion: Tri-component vascular grafts composed of PET, copolymers and cell-adhesive assemblies were fabricated. The endothelial lining on the polymer-coated grafts was promoted after modification with the protein multilayers. Artificial vascular prostheses have been made of non-degradable, non-compliant and thrombogenic materials for more than 50 years. Thus, they resemble passive tubing. Potential bio-activation by degradable materials and by introduction of living endothelial cells may approximate these materials to native artery. This work provided a method to include bio-degradable polymers into vascular graft and to facilitate the growth of cell lining via adhesive protein multilayers.

Highlights

  • IntroductionSurgical treatment involves bypassing occluded vessels with autologous arteries or veins, which are often unsuitable or completely absent [1]

  • The main cause of mortality in developed countries is atherosclerotic vascular disease of heart and peripheral arteries.Surgical treatment involves bypassing occluded vessels with autologous arteries or veins, which are often unsuitable or completely absent [1]

  • Niches could be seen between the individual fibers in the knitted textile structure of the polyethylene terephthalate (PET) (Figure 1A and F); commercial impregnation with type I collagen (Figure 1B and G) had a tendency to span these interstices

Read more

Summary

Introduction

Surgical treatment involves bypassing occluded vessels with autologous arteries or veins, which are often unsuitable or completely absent [1]. Synthetic vascular prostheses are an artificial alternative; the long-term patency of small caliber (

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.