Abstract

Breakdown of endothelial barrier integrity determines organ dysfunction and outcome of patients with sepsis. Increased levels of soluble vascular endothelial (VE)-cadherin fragments (sVE-cadherin) have previously been linked with inflammation-induced loss of endothelial barrier function. We provide evidence for a causative role of sVE-cadherin to induce loss of endothelial barrier function. In patients with sepsis, sVE-cadherin levels were associated with organ dysfunction and the need for volume resuscitation. Similarly, LPS-induced systemic inflammation in rats with microvascular dysfunction was paralleled by augmented sVE-cadherin levels. Newly generated recombinant human sVE-cadherin (extracellular domains EC1-5) induced loss of endothelial barrier function in both human microvascular endothelial cells invitro and in rat mesenteric microvessels invivo and reduced microcirculatory flow. sVE-cadherinEC1-5 disturbed VE-cadherin-mediated adhesion and perturbed VE-protein tyrosine phosphatase (VE-PTP)/VE-cadherin interaction resulting in RhoGEF1-mediated RhoA activation. VE-PTP inhibitor AKB9778 and Rho-kinase inhibitor Y27632 blunted all sVE-cadherinEC1-5-induced effects, which uncovers a pathophysiological role of sVE-cadherin via dysbalanced VE-PTP/RhoA signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call